Internet Protocol Suite | |
---|---|
Application Layer | |
BGP · DHCP · DNS · FTP · HTTP · IMAP · IRC · LDAP · MGCP · NNTP · NTP · POP · RIP · RPC · RTP · SIP · SMTP · SNMP · SSH · Telnet · TLS/SSL · XMPP · (more) |
|
Transport Layer | |
(more) | |
Internet Layer | |
(more) | |
Link Layer | |
ARP/InARP · NDP · OSPF · Tunnels (L2TP) · PPP · Media Access Control (Ethernet, DSL, ISDN, FDDI) · (more) | |
Simple Network Management Protocol (SNMP) is a UDP-based network protocol. It is used mostly in network management systems to monitor network-attached devices for conditions that warrant administrative attention. SNMP is a component of the Internet Protocol Suite as defined by the Internet Engineering Task Force (IETF). It consists of a set of standards for network management, including an application layer protocol, a database schema, and a set of data objects.[1]
SNMP exposes management data in the form of variables on the managed systems, which describe the system configuration. These variables can then be queried (and sometimes set) by managing applications.
Contents |
In typical SNMP use, one or more administrative computers called managers have the task of monitoring or managing a group of hosts or devices on a computer network. Each managed system executes, at all times, a software component called an agent which reports information via SNMP to the manager.
Essentially, SNMP agents expose management data on the managed systems as variables. The protocol also permits active management tasks, such as modifying and applying a new configuration through remote modification of these variables. The variables accessible via SNMP are organized in hierarchies. These hierarchies, and other metadata (such as type and description of the variable), are described by Management Information Bases (MIBs).
An SNMP-managed network consists of three key components:
A managed device is a network node that implements an SNMP interface that allows unidirectional (read-only) or bidirectional access to node-specific information. Managed devices exchange node-specific information with the NMSs. Sometimes called network elements, the managed devices can be any type of device, including, but not limited to, routers, access servers, switches, bridges, hubs, IP telephones, IP video cameras, computer hosts, and printers.
An agent is a network-management software module that resides on a managed device. An agent has local knowledge of management information and translates that information to or from an SNMP specific form.
A network management system (NMS) executes applications that monitor and control managed devices. NMSs provide the bulk of the processing and memory resources required for network management. One or more NMSs may exist on any managed network.
SNMP itself does not define which information (which variables) a managed system should offer. Rather, SNMP uses an extensible design, where the available information is defined by management information bases (MIBs). MIBs describe the structure of the management data of a device subsystem; they use a hierarchical namespace containing object identifiers (OID). Each OID identifies a variable that can be read or set via SNMP. MIBs use the notation defined by ASN.1.
SNMP operates in the Application Layer of the Internet Protocol Suite (Layer 7 of the OSI model). The SNMP agent receives requests on UDP port 161. The manager may send requests from any available source port to port 161 in the agent. The agent response will be sent back to the source port on the manager. The manager receives notifications (Traps and InformRequests) on port 162. The agent may generate notifications from any available port.
SNMPv1 specifies five core protocol data units (PDUs). Two other PDUs, GetBulkRequest and InformRequest were added in SNMPv2 and carried over to SNMPv3.
All SNMP PDUs are constructed as follows:
IP header | UDP header | version | community | PDU-type | request-id | error-status | error-index | variable bindings |
The seven SNMP protocol data units (PDUs) are as follows:
Retrieve the value of a variable or list of variables. Desired variables are specified in variable bindings (values are not used). Retrieval of the specified variable values is to be done as an atomic operation by the agent. A Response with current values is returned.
Change the value of a variable or list of variables. Variable bindings are specified in the body of the request. Changes to all specified variables are to be made as an atomic operation by the agent. A Response with (current) new values for the variables is returned.
Returns a Response with variable binding for the lexicographically next variable in the MIB. The entire MIB of an agent can be walked by iterative application of GetNextRequest starting at OID 0. Rows of a table can be read by specifying column OIDs in the variable bindings of the request.
Optimized version of GetNextRequest. Requests multiple iterations of GetNextRequest and returns a Response with multiple variable bindings walked from the variable binding or bindings in the request. PDU specific non-repeaters and max-repetitions fields are used to control response behavior. GetBulkRequest was introduced in SNMPv2.
Returns variable bindings and acknowledgement for GetRequest, SetRequest, GetNextRequest, GetBulkRequest and InformRequest. Error reporting is provided by error-status and error-index fields. Although it was used as a response to both gets and sets, this PDU was called GetResponse in SNMPv1.
Asynchronous notification from agent to manager. Includes current sysUpTime value, an OID identifying the type of trap and optional variable bindings. Destination addressing for traps is determined in an application specific manner typically through trap configuration variables in the MIB. The format of the trap message was changed in SNMPv2 and the PDU was renamed SNMPv2-Trap.
Acknowledged asynchronous notification from manager to manager. This PDU use the same format as the SNMPv2 version of Trap. Manager-to-manager notifications were already possible in SNMPv1 (using a Trap), but as SNMP commonly runs over UDP where delivery is not assured and dropped packets are not reported, delivery of a Trap was not guaranteed. InformRequest fixes this by sending back an acknowledgement on receipt. Receiver replies with Response parroting all information in the InformRequest. This PDU was introduced in SNMPv2.
SNMP version 1 (SNMPv1) is the initial implementation of the SNMP protocol. SNMPv1 operates over protocols such as User Datagram Protocol (UDP), Internet Protocol (IP), OSI Connectionless Network Service (CLNS), AppleTalk Datagram-Delivery Protocol (DDP), and Novell Internet Packet Exchange (IPX). SNMPv1 is widely used and is the de facto network-management protocol in the Internet community.
The first RFCs for SNMP, now known as SNMPv1, appeared in 1988:
These protocols were obsoleted by:
After a short time, RFC 1156 (MIB-1) was replaced by more often used:
Version 1 has been criticized for its poor security. Authentication of clients is performed only by a "community string", in effect a type of password, which is transmitted in cleartext. The '80s design of SNMP V1 was done by a group of collaborators who viewed the officially sponsored OSI/IETF/NSF (National Science Foundation) effort (HEMS/CMIS/CMIP) as both unimplementable in the computing platforms of the time as well as potentially unworkable. SNMP was approved based on a belief that it was an interim protocol needed for taking steps towards large scale deployment of the Internet and its commercialization. In that time period Internet-standard authentication/security was both a dream and discouraged by focused protocol design groups.
SNMPv2 (RFC 1441–RFC 1452), revises version 1 and includes improvements in the areas of performance, security, confidentiality, and manager-to-manager communications. It introduced GetBulkRequest, an alternative to iterative GetNextRequests for retrieving large amounts of management data in a single request. However, the new party-based security system in SNMP v2, viewed by many as overly complex, was not widely accepted.
Community-Based Simple Network Management Protocol version 2, or SNMPv2c, is defined in RFC 1901–RFC 1908. In its initial stages, this was also informally known as SNMP v1.5. SNMP v2c comprises SNMP v2 without the controversial new SNMP v2 security model, using instead the simple community-based security scheme of SNMP v1. While officially only a "Draft Standard", this is widely considered the de facto SNMP v2 standard.
User-Based Simple Network Management Protocol version 2, or SNMP v2u, is defined in RFC 1909–RFC 1910. This is a compromise that attempts to offer greater security than SNMP v1, but without incurring the high complexity of SNMP v2. A variant of this was commercialized as SNMP v2*, and the mechanism was eventually adopted as one of two security frameworks in SNMP v3.
As presently specified, SNMPv2 is incompatible with SNMPv1 in two key areas: message formats and protocol operations. SNMPv2c messages use different header and protocol data unit (PDU) formats from SNMPv1 messages. SNMPv2c also uses two protocol operations that are not specified in SNMPv1. Furthermore, RFC 2576 defines two possible SNMPv1/v2c coexistence strategies: proxy agents and bilingual network-management systems.
A SNMPv2 agent can act as a proxy agent on behalf of SNMPv1 managed devices, as follows:
Get
, GetNext
, and Set
messages to the SNMPv1 agent unchanged.GetNext
messages and then are forwarded to the SNMPv1 agent.The proxy agent maps SNMPv1 trap messages to SNMPv2 trap messages and then forwards them to the NMS.
Bilingual SNMPv2 network-management systems support both SNMPv1 and SNMPv2. To support this dual-management environment, a management application in the bilingual NMS must contact an agent. The NMS then examines information stored in a local database to determine whether the agent supports SNMPv1 or SNMPv2. Based on the information in the database, the NMS communicates with the agent using the appropriate version of SNMP.
SNMPv3 is defined by RFC 3411–RFC 3418 (also known as 'STD0062'). SNMPv3 primarily added security and remote configuration enhancements to SNMP.[2]
SNMPv3 provides important security features:[3]
As of 2004[update] the IETF recognizes Simple Network Management Protocol version 3 as defined by RFC 3411–RFC 3418[4] (also known as STD0062) as the current standard version of SNMP. The IETF has designated SNMPv3 a full Internet Standard,[5] the highest maturity level for an RFC. It considers earlier versions to be obsolete (designating them "Historic").[6]
In practice, SNMP implementations often support multiple versions: typically SNMPv1, SNMPv2c, and SNMPv3.[7]
Server, rack and appliance operating temperatures and room humidity could be monitored remotely for SNMP-enabled HVAC devices.[8][9]
SNMP implementations vary across platform vendors. In some cases, SNMP is an added feature, and is not taken seriously enough to be an element of the core design. Some major equipment vendors tend to over-extend their proprietary Command Line Interface (CLI) centric configuration and control systems.[10]
SNMP's seemingly simple tree structure and linear indexing may not always be understood well enough within the internal data structures that are elements of a platform's basic design. As a result, processing SNMP queries on certain data sets may result in higher CPU utilization than necessary. One example of this would be large routing tables, such as BGP or IGP.
Modular devices may dynamically increase or decrease their SNMP indices (aka instances) whenever slotted hardware is added or removed. Although this is most common with hardware, virtual interfaces have the same effect. Index values are typically assigned at boot time and remain fixed until the next reboot. Hardware or virtual entities added while the device is 'live' may have their indexes assigned at the end of the existing range and possibly reassigned at the next reboot. Network inventory and monitoring tools need to have the device update capability by properly reacting to the cold start trap from the device reboot in order to avoid corruption and mismatch of polled data.
Index assignments for an SNMP device instance may change from poll to poll mostly as a result of changes initiated by the system admin. If information is needed for a particular interface, it is imperative to determine the SNMP index before retrieving the data needed. Generally, a description table like ifDescr will map a user friendly name like Serial 0/1 (Blade 0, port 1) to a SNMP index.
For more detail on SNMP security implications see the CERT SNMP Vulnerabilities FAQ
SNMP by itself is simply a protocol for collecting and organizing information. Most toolsets implementing SNMP offer some form of discovery mechanism, a standardized collection of data common to most platforms and devices, to get a new user or implementor started. One of these features is often a form of automatic discovery, where new devices discovered in the network are polled automatically. For SNMPv1 and SNMPv2c, this presents a security risk, in that your SNMP read communities will be broadcast in cleartext to the target device. While security requirements and risk profiles vary from organization to organization, care should be taken when using a feature like this, with special regard to common environments such as mixed-tenant datacenters, server hosting and colocation facilities, and similar environments.